A functional interaction of Ku with Werner exonuclease facilitates digestion of damaged DNA.

نویسندگان

  • D K Orren
  • A Machwe
  • P Karmakar
  • J Piotrowski
  • M P Cooper
  • V A Bohr
چکیده

Werner syndrome (WS) is a premature aging disorder where the affected individuals appear much older than their chronological age. The single gene that is defective in WS encodes a protein (WRN) that has ATPase, helicase and 3'-->5' exonuclease activities. Our laboratory has recently uncovered a physical and functional interaction between WRN and the Ku heterodimer complex that functions in double-strand break repair and V(D)J recombination. Importantly, Ku specifically stimulates the exonuclease activity of WRN. We now report that Ku enables the Werner exonuclease to digest through regions of DNA containing 8-oxoadenine and 8-oxoguanine modifications, lesions that have previously been shown to block the exonuclease activity of WRN alone. These results indicate that Ku significantly alters the exonuclease function of WRN and suggest that the two proteins function concomitantly in a DNA damage processing pathway. In support of this notion we also observed co-localization of WRN and Ku, particularly after DNA damaging treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conserved and species-specific functional interaction between the Werner syndrome-like exonuclease atWEX and the Ku heterodimer in Arabidopsis

Werner syndrome is associated with mutations in the DNA helicase RecQ3 [a.k.a. Homo sapiens (hs)WRN]. The function of hsWRN is unknown although biochemical studies suggest a role in DNA ends stability and repair. Unlike other RecQ family members, hsWRN possesses an N-terminal domain with exonuclease activity, which is stimulated by interaction with the Ku heterodimer. While this interaction is ...

متن کامل

Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation.

Human Werner Syndrome is characterized by early onset of aging, elevated chromosomal instability, and a high incidence of cancer. Werner protein (WRN) is a member of the recQ gene family, but unlike other members of the recQ family, it contains a unique 3'-->5' exonuclease activity. We have reported previously that human Ku heterodimer interacts physically with WRN and functionally stimulates W...

متن کامل

WRN Exonuclease activity is blocked by specific oxidatively induced base lesions positioned in either DNA strand

Werner syndrome (WS) is a premature aging disorder caused by mutations in the WS gene (WRN). Although WRN has been suggested to play an important role in DNA metabolic pathways, such as recombination, replication and repair, its precise role still remains to be determined. WRN possesses ATPase, helicase and exonuclease activities. Previous studies have shown that the WRN exonuclease is inhibite...

متن کامل

The Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer.

Werner syndrome is an inherited disease displaying a premature aging phenotype. The gene mutated in Werner syndrome encodes both a 3' --> 5' DNA helicase and a 3' --> 5' DNA exonuclease. Both WRN helicase and exonuclease preferentially utilize DNA substrates containing alternate secondary structures. By virtue of its ability to resolve such DNA structures, WRN is postulated to prevent the stall...

متن کامل

Werner syndrome helicase contains a 5'-->3' exonuclease activity that digests DNA and RNA strands in DNA/DNA and RNA/DNA duplexes dependent on unwinding.

We show that WRN helicase contains a unique 5'-->3' exonuclease activity in the N-terminal region. Adeletion mutant lacking 231 N-terminal amino acid residues, made in a baculovirus system, did nothave this activity, while it showed ATPase and DNA helicase activities. This exonuclease activity was co-precipitated with the helicase activity using monoclonal antibodies specific to WRN helicase, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 9  شماره 

صفحات  -

تاریخ انتشار 2001